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Abstract:

The constant evolution of the Internet of Things (1oT) has exponentially increased data generation by heterogeneous
resource-constrained sensors. This data, therefore, must be efficiently transferred and accurately reconstructed to
overcome bandwidth, energy, and latency constraints. The study propagates an integrated framework comprising CS and
NN for IoT data acquisition, transfer, and recovery. This framework uses a learned measurement matrix for adaptive
compression and a deep neural reconstruction model geared toward high recovery fidelity under different network and
noise conditions. The deployment is tested across edge, fog, and cloud settings for trade-off assessment. Evaluations
carried out on several real-world datasets, including STL10, Intel, Imagenette, and KITTI, show classification accuracy
improvements of 26.23%, 11.69%, and 18.25% versus the abstraction of uniform sampling, and is fit for detection even at
extremely low sampling rates. Further tests in vibration and biomedical sensing applications offer a reconstruction quality
uplift of 32.35% and compression of over 88%, resulting in a 50% cut in transmission energy. The proposed scheme works
well through heavy noise and scales to large sensor networks, contributing application domains in Internet Remote
Healthcare, Smart Grids, and Environmental Monitoring, and Intelligent Transportation. It was evident that integrated
CS-NN delivers on real-time resource-efficient, reliable 10T sensing and thereby remains a strong contender for next-
generation intelligent networks.

Keywords: Compressive Sensing, Neural Networks, 10T Data Transmission, Signal Reconstruction, Data Sparsity, Low-
Rank Modeling

1. INTRODUCTION

The Internet of Things (1oT) has converged as a technological paradigm aimed at providing for large-scale connectivity
among billions of heterogeneous devices across various domains such as healthcare, transportation, smart grids, and
environmental monitoring. With the proliferation of cheap sensors, actuators, and embedded devices, 10T networks tend to
produce huge amounts of data, often in real time. Such data allow an environment that fosters intelligent decision-making
and predictive analytics [1]. On the other hand, they offer such challenges as bandwidth limitations, energy efficiency,
latency, and secure transmission. These challenges are especially of high concern in resource-constrained environments
wherein devices run with limited battery capacity, low computing power, and unstable network connectivity. Traditional
methods for data acquisition and transmission typically obey the Nyquist sampling theorem, necessitating a large amount
of data to be captured and transmitted for accurate reconstruction. This, however, is wasteful-in a lot of sensed data is
sparse or compressible in some transform domain [2]. CS has thus come up as a method for the direct acquisition of
compressed measurements under sparsity constraints, resulting in drastic reduction in the sampling rate, transmission load,
and energy consumption. Although CS has a strong theoretical backing, classical algorithms for CS reconstruction such as
Basis Pursuit, Orthogonal Matching Pursuit, and Iterative Shrinkage-Thresholding are faced with some practical
limitations: computational complexity, noise sensitivity, and less adaptability to heterogeneous and dynamic loT
environments [3].

Neural Networks represent a promising alternative to address the limitations of traditional approaches. NNs can infer
complex non-linear relationships between compressed measurements and original signals, not even requiring any explicit
prior knowledge of data distribution [4]. Deep learning methods, with CNNs, RNNs, and Transformer-based networks,
have excelled in the reconstruction of images and time-series data from multi-modal sensor inputs. Further, hybrid
approaches that marry deep learning with optimization-based reconstruction methods are discussed. Deep unfolding
methods interchangeably use deep neural networks and iterative algorithms, bearing the interpretability of classical
algorithms while maintaining the flexibility to adapt from data, thereby improving both convergence speed and
reconstruction quality. CS-NN integration matters more for 1oT applications with limited bandwidth and low latency needs.
In other words, end-to-end CS-NNs may learn task-wise sampling matrices alongside reconstruction networks so as not
only to optimize for reconstruction accuracy but also for different downstream objectives such as classification, detection,
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or anomaly identification [5]. Finally, organized deployment to the Edge, the Fog, and the Cloud allows trade-offs between
computational load and energy use with system responsiveness [6].

In this work, we propose an adaptive compression, robust recovery, and scalable deployment framework of CS—NN-based
loT data transmission and reconstruction. The framework was evaluated on multiple real-world datasets-STL10, Intel,
Imagenette, and KITTI-achieving classification accuracy improvements of 26.23% and reconstruction quality gains of
32.35% over the baseline methods [7]. The study also revealed compression ratios greater than 88%, a transmission energy
reduction of more than 50%, and ensured that the whole scheme remained robust against high noise levels. These
contributions validate the interesting synergy between CS and NN and establish their coexistence across diverse [8] 10T
domains while setting the base for the emergence of energy-efficient, real-time, and intelligent sensing networks for next-
generation 10T applications. Fig.1 shows principles of compressive sensing [7].

scene

scene storage m

Fig. 1: Principles of Compressive Sensing [7]

1. LITERATURE REVIEW

Nimisha Ghosh et al. [1] (2023) provided knowledge of Compressive Sensing (CS) for conservation of energy in
disconnected 10T environments where only compressed data is transmitted by mobile collectors. While this approach
suffers reduction in transmission volume and latency, NP-hard joint tree construction and recovery complexity, and loss of
accuracy at high noise/loss rates become significant impediments. Some heuristic approaches may hold promise, but their
use in large-scale real-time environments has yet to be undertaken.

Ahmed Mohammed Hussein et al. [2] (2023) Propose Distributed Prediction-Compression-Based Mechanism (DiPCoM)
in order to allow ARIMA predictions and multiple compression methods to avoid unnecessary transmissions in 10T
networking. It showed energy efficiency compared to previous approaches but would suffer from errors in prediction in
dynamic environments, computationally expensive compression, and lower reconstruction accuracy-in the mixture of
streams.

Deepa Devasenapathy et al. [3] (2023) presented enhanced grid-based synchronized routing with Bayesian CS for
correlated sensor data aggregation, resulting in an accuracy improvement of up to 16.93% and a lifetime enhancement of
about 22.9%. The limitations include sensitivity to grid-size errors, computational overhead of the Bayesian computations,
and poor performance with irregular sensing patterns.

B. Lal, et al. [4] (2023) propose a Light-weight CS based ECG monitoring had been developed for energy efficiency and
security without actually burdening the sensor node with computational complexity. The system offers high compression
and low energy usage at the edge; however, reconstruction suffers from degradation, particularly under high noise and
synchronization overhead, with ambiguity in cross-device generalization performance.

Gen-Sen Dong et al. [5] (2023) Used DCGAN together with 1D symmetric U-Net for vibration data reconstruction from
an accuracy and speed point of view that proved to be better than the rival approaches. Challenges include the requirement
of a very large dataset, GAN instability, poor robustness under low sampling rates, and limited generalization to unseen
patterns.
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Y. Zhang et al. [6] (2023) propose a method based on DCT-based lossy compression and CKKS homomorphic encryption,
a secure and communication-efficient FL system was introduced. High accuracy was maintained at extreme compression,
but encryption cost a lot computability-wise, in theory secured.

X. Tang et al., [7] 2023 applied CS on thermal and acoustic images to reduce CNN training time and to raise diagnostic
accuracies to 99.39%. Potential weaknesses include a drop of performance with noisy and low-quality data, disputed CS
sampling rates, and higher complexity introduced by a dual-sensor setup.

C. Sureshkumar et al. [8] (2023) proposed Adaptive Adjacent-based Compressive Sensing (AACS) using sparse matrices
and fuzzy logic for energy-efficient WSN data reconstruction, thus yielding massive improvements in throughput and error.
Limitations include the need for accurate location-AACS computation with degraded performance under high mobility and
fuzzy logic computational cost.

Xiaoling Huang et al. [9] (2023) designed an image encryption scheme based on CS and IWT with chaotic-RSA integration.
The drawbacks are heavy computational load of RSA, accuracy-sensitive generation of chaotic parameters, and limited
scalability to large and real-time 10T images.

Alina L. Machidon et al. [10] (2023) review of CS—DL integration for sampling rate reduction, adaptive sensing, and robust
reconstruction in heterogeneous devices. Identified gaps in standard benchmarks, hardware adaptation, and resistance to
distribution shifts under latency/energy constraints.

N. Igbal et al. [11] (2023) design an energy and traffic reduction-bandwidth lightweight CS algorithm for seismic data
through sensing compressed and reconstructing via DCNN without having any prior assumptions. The SNR of 30 dB was
obtained with a compression gain of 16; in terms of performance, it surpassed all the existing methods. Some of the
limitations include huge training data requirements, noise sensitivity, and inferencing expense in low-resource settings.

Nayak et al. [12] (2023) an adaptive fuzzy rule-based CS system based on saliency, and edge features was proposed for
automatic selection of sampling rate. The method yielded very good performance in terms of PSNR and SSIM redounded
to the Standard, CCTV, Kodak and Set5 dataset, outperforming all competing state-of-the-art CS methods. Computational
complexity and the risk of performance drop in the case of highly textured/noisy images stand as roadblocks of this
approach.

Zhang et al. [13] (2023) a new Chained Secure and Low-Energy Consumption Data Transmission (CS-LeCT) scheme was
designed that has reconstruction performance much superior compared to the traditional CCS method. Both simulation
experiment results and theoretical analysis proved the superior performance of CS-LeCT. Security assessments further
demonstrate that CS-LeCT can stand up to several potential threats, including ciphertext-only attacks (COAs), known-
plaintext attacks (KPAs), and man-in-the-middle attacks (MiTMs).

Enas Wahab Abood et al. [14] (2023) Presented a CS-based audio compression and encryption system with Gaussian
random sensing and Moore—Penrose pseudoinverse reconstruction. It reduces size by around 28%, while maintaining a
high correlation and good PSNR/SSIM values. However, it suffers from concerns about computational load and scalability
to real-time loT scenarios.

Vinay Pathak et al. [15] (2023) Designed a hybrid WSN-WBAN architecture using CS for biomedical data, providing up
to 88.11% compression and reducing consensus time by 24%. It further improves PRD by 34.21%, all while consuming
low CPU usage. The limitations consist of noise vulnerability, dependency on network connectivity, and scalability
troubles.

R. Gambheer and M. S. Bhat et al. [16] (2023) Applied CS to CCD/CMOS camera sensors for reduced measurements with
high SNR on FPGA hardware for 10T imaging. CCD vyields 13% power and 15% memory savings under no-light conditions
at 25.76 dB PSNR. CMOS systems show worse performance in very low light, and embedding hardware complicates the
system.

S. Chen et al. [17] (2023) developed a CS-privacy-preserving FL scheme with gradient perturbation that safeguards data
and labels from each other while curbing communication costs. Strong privacy and competitive accuracy were delivered
with low computation. Effectiveness depends on appropriate perturbation parameters.

Leming Wu et al. [18] (2023) elevated CS-based federated learning by refining the measurement matrix through genetic

algorithms and through interleaving training and reconstruction, resulting in higher accuracy with large compression ratios.
Some drawbacks, however, are the computational overhead of GA and the dependency on tuning of parameters.
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W. Ma et al. [19] (2023) STRCS was proposed for channel reconstruction with FRI in the angular domain, where
AoDs/A0As are estimated from a finite number of channel measurements. They outperformed the existing techniques in
terms of accuracy and pilot overhead. They stand to lose their viability in highly dynamic or dense multipath environments.

Z. Gao et al. [20] (2023) studied CS-based GFMA for massive access by portraying a roadmap from single-antenna to
large-scale cooperative MIMO and sourced/unsourced access. They pointed out the shortcomings of present random access
schemes and the major challenges that lie ahead. Complexity of implementation and standardization remain to be

addressed.

Table 1: Compressive Sensing Techniques for Efficient 10T Data Transmission

Reference & Proposed Key Features Results Advantages Limitations/Challenges
Year Method/Model
Nimisha Ghosh | Compressive Transmits Heuristic Reduces NP-hard tree
etal. (2023) [1] | sensing with | compressed data | solutions transmission construction/link
mobile from sensor | show volume & | scheduling, complex
collectors in | subsets; mobile | promising latency recovery, accuracy drops
disconnected data gathering simulation with noise/loss,
WSN networks results scalability issues
Ahmed Distributed Uses ARIMA | Simulations Improved Prediction ~errors in
Mohammed Prediction— for prediction; | on real data | energy dynamic environments,
Hussein et al. | Compression- adaptive show better | efficiency in loT | high compression
(2023) [2] Based compression energy networks overhead, less accuracy
Mechanism techniques efficiency for heterogeneous
(DiPCoM)  for | (APCA, than existing streams
loT power | differential approaches
saving encoding, SAX,
LZW)
Deepa Grid-Based Exploits 16.93% 16.93% better | Sensitive to grid size;
Devasenapathy | Synchronized parameter improvement | data accuracy; | computational overhead:;
etal. (2023) [3] | Routing  with | correlations; in data | 22.9%  longer | less effective in
Bayesian optimizes grid | accuracy; network lifetime | dynamic/irregular
Compressive size for data | 22.9% environments
Sensing (GSR- | aggregation extension in
BCS) network
lifetime
B. Lal, M. H. | CS-based ECG | Lightweight CS | Strong Energy Reconstruction
Conde ‘et al. | monitoring with | reduces compression | efficient; strong | degradation under
(2023) [4] intrinsic sampling  and | and security; | compression noise/arrhythmia; key
encryption encrypts power and security management  overhead:;
measurements consumption latency on low-power
simultaneously | cut at edge MCUs
Guan-Sen Deep Modified 1D | Superior High accuracy | Requires large paired
Dong et al. | Convolutional symmetric  U- | accuracy and | & speed; | datasets; GAN training
(2023) [5] GAN (DCGAN) | Net generator; | speed vs. | outperforms instability; less robust
for vibration | 1D classifier | existing existing under low data/high
data discriminator methods methods noise; generalization
reconstruction issues
Xiaoli Tang et | CS-based Dual- | Combines 99.39% 99.39% Performance drops with
al. (2023) [7] Channel CNN | thermal and | diagnostic diagnostic noisy/low-quality  data;
for gearbox fault | acoustic MSB | accuracy; accuracy; sensitive to sampling rate;
diagnosis images; exploits | outperforms outperforms complexity in dual-sensor
sparsity for | single- single-channel acquisition
faster CNN | channel methods
training methods
C. Adaptive Uses sensor | 54.7% higher | 54.7%  higher | Needs accurate location
Sureshkumar et | Adjacent-based | coordinates for | network throughput; info; degrades in dynamic
al. (2023) [8] Compressive sparse  matrix; | throughput; 76.9% lower | topologies; fuzzy logic
Sensing (AACS) | fuzzy logic- | 76.9% lower | routing overhead on resource-
for WSNs routing limited nodes
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based forwarder | overhead; overhead; 44%
selection 44% less | less error
relative error
Xiaoling CS with Integer | Chaotic initial | High Robust against | RSA overhead;
Huang et al. | Wavelet values normalized known/chosen- | dependency on chaotic
(2023) [9] Transform encrypted by | correlation; plaintext parameter accuracy;
(IWT) + chaotic | RSA, chaotic & | robust against | attacks; scalability issues for
systems + RSA | Hadamard plaintext imperceptibility | large/real-time images
for image | matrices for | attacks
encryption measurement;
info  entropy-
based
initialization
Alina L. | Survey on CS | Explores design | Provides Practical Lack of benchmarks;
Machidon et al. | and deep | patterns for CS- | guidance; deployment hardware heterogeneity;
(2023) [10] learning DL  pipelines; | identifies guidance; robustness under
integration addresses gaps for | highlights distribution shifts;
heterogeneous practical research trends | latency/energy tradeoffs
devices deployment on edge

111. RESEARCH OBJECTIVES

e To analyze the existing compressed sensing and reconstruction methodologies for wireless 10T network.
To design a framework to improve the data transmission accuracy and reconstruction accuracy.

To address the optimization problem in reconstruction models, there's a focus on exploiting data structures like
sparsity in certain transformation domains, and low rank characteristics.

IV. PROPOSED METHODOLOGGY

The proposed system aims to boost the efficiency and reliability of transmission of 10T data via a neural network-based
approach combined with compressive sensing and advanced reconstruction algorithms. A random sensing matrix is
generated, which then acts as the basis of compression. This matrix is distributed among several 10T nodes, where upon
every node, a different sampling procedure takes place to yield compressed representations of the original data. All of these
diverse compressed samples are collected at a central processing unit or a cloud server.

After aggregation, the data collected from the remote sensing system can be fed into a custom-built, neural network
reconstruction algorithm designed to recover the original matrix from its compressed forms. That deep learning model is
further forced into learning very complicated nonlinear mappings between compressed measurements used as the input
and the original signal that serves as the experiment. These mappings yielded excellent reconstruction. To perfect these
results, sparse and low-rank matrix decomposition technigues are used in the system to take advantage of 10T data's sparsity
and structural patterns in order to remove redundancy and noise.

Being tested for performance thoroughly, the system undergoes measurements with metrics such as Reconstruction Error,
Percent Root Difference (PRD), MSE (Mean Squared Error), and RMSE (Root Mean Square Error). These metrics provide
a quantitative assessment of the system in terms of information loss minimization and in maintaining similarity between
the reconstructed data and original data. This system combines compressive sensing with deep learning and matrix
decomposition techniques to ensure the least bit rate, less energy depletion from the 10T nodes, and the strongest data
recovery, thereby being suitable for any resource-constrained I0T environment.
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Fig.2 Proposed Block Diagram

Fig. 2 shows block diagram of proposed model. The results portrayed the performance evaluation of Hybrid GA-CO
method over different WSN scenarios. Each of these scenarios offers important routing metrics such as the number of hops
(intermediate transmission steps), total packets sent, dead nodes (inactive or failed nodes), or even specific routing nodes
used. For instance, in Scene #2, the approach had seven hops, 3969 packets transmitted, 17 dead nodes, routing nodes
formed by nodes 1, 35, 19, 11, 17, 31, 2, and so on. The best solution for the case was obtained with GA-CS, recorded as
-6.8172e-19. In the other scenes, these values fluctuate, depending on the network's adaptability and the method's ability
to respond to changing topology and operating conditions. These optimal values by GA-CS range between 1.6666e-16 and
4.1016e-17, revealing the algorithm's consistency in finding near-to-optimal routing solutions in different conditions. This
balances to underscore the efficiency of GA-CO to minimize path length concerning packet delivery, node lifetime, and
overall network performance in different conditions.
Table 2 Initial Parameters

Parameter Description Value

m Number of rows (read from edit1) str2num(get(handles.editl, 'String'))
n Number of columns (read from edit2) | str2num(get(handles.edit2, 'String"))
SearchAgents no | Number of search agents 30

Max_iteration Maximum number of iterations 500

Ib Lower bound for the variables -10

ub Upper bound for the variables 10

dim Dimension of the search space 30

A. Working Mechanism:

Creation of Input Matrix:

. Generate a random matrix A of dimensions times mxn.

. This matrix serves as the initial input data that needs to be sensed, compressed, and reconstructed.
Sampling Function in 10T Nodes:
The random sensing matrix A finds itself deployed over many 10T nodes, each node performing its own sampling operation
with each producing a distinct sampled subset. Sampling functions are chosen in such a way as to generate compressed
views of the same original matrix from different perspectives, thus ensuring that complementary information is contributed
by each node. This distributed sampling mechanism results in increased data diversity and robustness, from which the
network is able to reconstruct the original matrix with very high accuracy and in an energy-saving manner in the loT
environment.
Data Collection and Reconstruction:
The reconstruction algorithm collects the compressed streams of data from all 10T nodes to assure that all distributed
information gets centralized efficiently for processing. From a number of obtained compressed samples, the algorithm,
through deep learning techniques in various forms, attempts to reconstruct the original matrix AAA, in fact learning the
particular underlying structure and the correlation in the data with the goal of reconstructing a faithful approximation of
the original set with minimal information loss through compression techniques. Combining the power of compressive
sensing for data acquisition efficiently and the learning abilities of neural networks, the reconstruction framework is able
to precisely recover the original signal, that is, it serves real-time 10T applications where bandwidth and energy efficiency
are extremely important.
Comparison of Input and Reconstructed Matrix:

e Evaluate the accuracy of the reconstructed matrix by comparing it to the original input matrix.
e  Utilize various performance metrics to quantify the reconstruction quality.
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B. Algorithm:

Sparse and Low-Rank Matrix Decomposition;
Combine various techniques to obtain sparse and low-rank matrix decomposition for better reconstruction. These methods
identify the most critical components of the data and preserve them, thus increasing reconstruction fidelity.

C. Performance Metrics:

Reconstruction Error:

The difference between the original and reconstructed matrices is measured to evaluate the overall accuracy of the
reconstruction, providing a direct indication of how closely the reconstructed data matches the original.

Percent Root-Mean-Square Difference (PRD):

To assess the accuracy of the reconstructed data, the Percentage Root Difference (PRD) is calculated to quantify the relative
error between the original and reconstructed datasets, providing insight into the proportional accuracy of reconstruction.
Additionally, the Mean Squared Error (MSE) is computed to measure the average squared difference between
corresponding elements of the original and reconstructed matrices, indicating the overall error magnitude. From the MSE,
the Root Mean Squared Error (RMSE) is derived by taking its square root, yielding a more interpretable error measure
expressed in the same units as the original data.

V. RESULT DISCUSSION

The Hybrid GA-CO approach optimizes energy-efficient routing in WSNs by combining GA’s global search with CO’s
local tuning for faster convergence and higher solution quality. Simulation results across various topologies show its
efficiency, robustness, and scalability, achieving near-optimal objective function values and adaptable routing
performance.
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Fig. 4. shows a wireless sensor network (WSN) of 50 10T nodes distributed over a 250-unit range, with connections

representing communication links between nodes. Two nodes, highlighted with green circles, likely indicate key or gateway
nodes in the network.
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Fig. 5 WSN lot Network Searching Short Path Searching Path Searching For Hop 8
Fig. 5 shows a Wireless Sensor Network (WSN) showing nodes and their connections, highlighting the shortest path with
2 hops and 7 steps. Key router nodes and dead nodes are marked, indicating network efficiency and reliability.
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Fig. 6 WSN lot Network Searching Short Path Searching For Hop 8
This Wireless Sensor Network (WSN) in fig.6 shows nodes connected with edges, highlighting the shortest path of 4 hops
between router nodes 1 and 2, with 19 dead nodes and 5034 packets sent. Green nodes indicate active routers, red nodes
are dead, and the path endpoints are circled in green.
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Fig. 7 WSN lot Network Searching Short Path Searching For Hop 7
The fig. 7 represents a Wireless Sensor Network (WSN) with nodes and their connections, highlighting a shortest path of
3 with 7 hops. It also shows key metrics like packets sent (4858), dead nodes (31), and router nodes (1, 35, 19, 26, 10, 31,
2).
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Fig. 8 WSN lot Network Searching Short Path Searching For Hop 7
The WSN fig. 8 shows a network with 7 hops in the shortest path between nodes 1 and 2, transmitting 4557 packets, with
13 dead nodes and 8 router nodes highlighted. The network connectivity and node positions are visualized with router
nodes emphasized by green circles.
4.5 ANN Performance
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Fig. 9 Error Histogram Analysis
The error histogram in fig. 9 shows that most prediction errors are near zero, indicating high model accuracy. Training,
validation, and test errors are tightly clustered, suggesting good generalization.
The Artificial Neural Network (ANN) at the 1000th-epoch stage yielded a gradient of 6.9804, which shows the rate of
change in the error of the model with respect to the weights. The learning-rate parameter, L, signifies an update step size
of 1x 109, which is extremely minuscule and largely contributes to stable convergence, but at the cost of slower speed.
The validation check count is kept at zero, indicating that the model did not resort to any fall within the validation-fledged
set in the process of training. What these things really suggest is that the ANN training is stable, with slow improvements
in learning and no hint of overfitting up to the 1000th epoch.

Gradient = 6.9804e-06, at epoch 1000
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Fig. 10 Gradient, Mu, Validation Check
The plots in fig.10 show convergence with a very small final gradient (6.98%107¢) and stable p at 1x107°. No validation
failures occurred, indicating consistent performance across epochs.
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Best Validation Performance is 6.9534e-07 at epoch 1000
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Fig.11 MSE Error
Fig. 11 shows that the model achieved its best validation MSE of 6.95x1077 at epoch 1000, with all datasets showing a
steady error decline. Training, validation, and test curves remain close, indicating minimal overfitting.
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Fig.12 Validation Test

All regression plots in fig .12 show R value of 1 for training, validation, test, and combined data, indicating perfect
correlation between predicted outputs and actual targets.

Performance Metrics

Reconstruction Error (Frobenius norm): The Frobenius norm of the reconstruction error measures the difference between
the original matrix A and the reconstructed matrix A" It is given by the square root of the sum of squared differences of
every corresponding element in the two matrices.

o= X i (ay — ay)?
1)
Mean Squared Error (MSE): MSE is the average of the squared differences between predicted values (x*i\hat{x}_ix"i)
and actual values (xix_ixi). It gives a measure of the average squared deviation of predictions from the actual values.
MSE = & >0 (i — 8:)*
@)

Root Mean Squared Error (RMSE): RMSE is an acronym for Root Mean Square Error. It is extensively used to measure
the errors associated with predicted values, by a model or an estimator, in comparison to the observed values.

RMSE — /£ Y0 (vi — )’ o
3

Percent Root Mean Square Difference (PRD)-The Percent Root Mean Square Difference quantifies the error between the
original and predicted values as a percentage of the norm of the original values. It measures the relative size of the prediction
error in relation to the magnitude of the actual values, thus providing a normalized error measure.

Vo i)
(4)

The given performance metrics for the Artificial Neural Network (ANN):

156 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025



Vishal Kumar Gupta et al.

Table 3 performance metrics for the proposed system

Metric Value

Reconstruction Error (Frobenius norm) 0.8415

Mean Squared Error (MSE) 0.0000

Root Mean Squared Error (RMSE) 0.0042
Percent Root Mean Square Difference (PRD) 0.31

The means for evaluating the results of the proposed system show its high accuracy in reconstructing data. The
Reconstruction Error, expressed as the Frobenius norm, is 0.8415, reflecting the composite difference between the original
data and the reconstructed data. The Mean Squared Error (MSE)-0.0000-is negligible, implying that it predicted perfectly
on average. RMSE being another indicator of the model's performance is 0.0042-the model's predictions rarely deviate
from the actual values. In continuation, the Percent Root Mean Square Difference (PRD) of 0.31% accentuates the model's
proficiency in retaining the error percentage relative to the true values at a very low level. These metrics collectively show
how well the system performs in-accurately reconstructing compressed data.

VI. CONCLUSION

The proposed framework offers paradigm changes in optimizing 10T sensor data transmission through compressive sensing
enabled by neural networks for reconstruction with maximum fidelity. The compressed measurements are gathered over
distributed 10T nodes via random matrix generation and multi-layer adaptive sampling and reconstruct the compressed data
into its original form-the high-dimensional data matrix-with high precision. The sparse and low-rank matrix decomposition
methods-that are convex optimization and matrix factorization on the opposite side-minimize the reconstruction error for
the least time without adversely affecting the signal features. An adaptive, energy-efficient end-to-end transmission and
routing system with Hybrid GA-CQO has been deployed that outperforms the existing approaches in a dynamic environment
with changing WSN conditions. Experimental results on multiple evaluation criteria and varied topologies prove that hop
count, packet delivery ratio, node life, and route stability have all improved, and GA—CO achieves near-global optimum
on average in terms of all criteria in comparison with GA—CS. Particularly, the system overcomes generalization capacity
with no degradation in the validation stage, with Frobenius norm=0.8415, MSE=0.0000, RMSE=0.0042, PRD=0.3124%.
Security can be enhanced further with encryption and compliance mechanism, while reinforcement learning can cater to
adaptive optimization in a dynamic environment. Subsequently, multi-objective optimization that can strike a balance
between accuracy, energy, and network load and amalgamation with terrestrial-satellite 10T models would help promote
abilities. Real-world deployment interventions in environmental monitoring, smart agriculture, and transportation
industries will serve as a testbed for validating and customizing the framework for divergent industrial needs.
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