
 

 
147 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 03, September-2025 

Available at www.rjetm.in/ 

Enhancing IoT Data Transmission and Reconstruction Using 

Compressive Sensing and Neural Networks 
1Vishal Kumar Gupta, 2Saurabh Mandloi 

1M. Tech Scholar, Department of computer science & Engineering, Sam Global University, Bhopal 
2Head of department, Department of computer science & Engineering, Sam Global University, Bhopal 

bitugpt619@gmail.com , hodcse@samglobaluniversity.ac.in 

 
  

* Corresponding Author: Vishal Kumar Gupta       

 

Abstract:  

The constant evolution of the Internet of Things (IoT) has exponentially increased data generation by heterogeneous 

resource-constrained sensors. This data, therefore, must be efficiently transferred and accurately reconstructed to 

overcome bandwidth, energy, and latency constraints. The study propagates an integrated framework comprising CS and 

NN for IoT data acquisition, transfer, and recovery. This framework uses a learned measurement matrix for adaptive 

compression and a deep neural reconstruction model geared toward high recovery fidelity under different network and 

noise conditions. The deployment is tested across edge, fog, and cloud settings for trade-off assessment. Evaluations 

carried out on several real-world datasets, including STL10, Intel, Imagenette, and KITTI, show classification accuracy 

improvements of 26.23%, 11.69%, and 18.25% versus the abstraction of uniform sampling, and is fit for detection even at 

extremely low sampling rates. Further tests in vibration and biomedical sensing applications offer a reconstruction quality 

uplift of 32.35% and compression of over 88%, resulting in a 50% cut in transmission energy. The proposed scheme works 

well through heavy noise and scales to large sensor networks, contributing application domains in Internet Remote 

Healthcare, Smart Grids, and Environmental Monitoring, and Intelligent Transportation. It was evident that integrated 

CS-NN delivers on real-time resource-efficient, reliable IoT sensing and thereby remains a strong contender for next-

generation intelligent networks.          

Keywords: Compressive Sensing, Neural Networks, IoT Data Transmission, Signal Reconstruction, Data Sparsity, Low-

Rank Modeling 

 

I. INTRODUCTION 

The Internet of Things (IoT) has converged as a technological paradigm aimed at providing for large-scale connectivity 

among billions of heterogeneous devices across various domains such as healthcare, transportation, smart grids, and 

environmental monitoring. With the proliferation of cheap sensors, actuators, and embedded devices, IoT networks tend to 

produce huge amounts of data, often in real time. Such data allow an environment that fosters intelligent decision-making 

and predictive analytics [1]. On the other hand, they offer such challenges as bandwidth limitations, energy efficiency, 

latency, and secure transmission. These challenges are especially of high concern in resource-constrained environments 

wherein devices run with limited battery capacity, low computing power, and unstable network connectivity. Traditional 

methods for data acquisition and transmission typically obey the Nyquist sampling theorem, necessitating a large amount 

of data to be captured and transmitted for accurate reconstruction. This, however, is wasteful-in a lot of sensed data is 

sparse or compressible in some transform domain [2]. CS has thus come up as a method for the direct acquisition of 

compressed measurements under sparsity constraints, resulting in drastic reduction in the sampling rate, transmission load, 

and energy consumption. Although CS has a strong theoretical backing, classical algorithms for CS reconstruction such as 

Basis Pursuit, Orthogonal Matching Pursuit, and Iterative Shrinkage-Thresholding are faced with some practical 

limitations: computational complexity, noise sensitivity, and less adaptability to heterogeneous and dynamic IoT 

environments [3]. 

 

Neural Networks represent a promising alternative to address the limitations of traditional approaches. NNs can infer 

complex non-linear relationships between compressed measurements and original signals, not even requiring any explicit 

prior knowledge of data distribution [4]. Deep learning methods, with CNNs, RNNs, and Transformer-based networks, 

have excelled in the reconstruction of images and time-series data from multi-modal sensor inputs. Further, hybrid 

approaches that marry deep learning with optimization-based reconstruction methods are discussed. Deep unfolding 

methods interchangeably use deep neural networks and iterative algorithms, bearing the interpretability of classical 

algorithms while maintaining the flexibility to adapt from data, thereby improving both convergence speed and 

reconstruction quality. CS-NN integration matters more for IoT applications with limited bandwidth and low latency needs. 

In other words, end-to-end CS-NNs may learn task-wise sampling matrices alongside reconstruction networks so as not 

only to optimize for reconstruction accuracy but also for different downstream objectives such as classification, detection, 
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or anomaly identification [5]. Finally, organized deployment to the Edge, the Fog, and the Cloud allows trade-offs between 

computational load and energy use with system responsiveness [6]. 

 

In this work, we propose an adaptive compression, robust recovery, and scalable deployment framework of CS–NN-based 

IoT data transmission and reconstruction. The framework was evaluated on multiple real-world datasets-STL10, Intel, 

Imagenette, and KITTI-achieving classification accuracy improvements of 26.23% and reconstruction quality gains of 

32.35% over the baseline methods [7]. The study also revealed compression ratios greater than 88%, a transmission energy 

reduction of more than 50%, and ensured that the whole scheme remained robust against high noise levels. These 

contributions validate the interesting synergy between CS and NN and establish their coexistence across diverse [8] IoT 

domains while setting the base for the emergence of energy-efficient, real-time, and intelligent sensing networks for next-

generation IoT applications. Fig.1 shows principles of compressive sensing [7]. 

 

   

 
Fig. 1: Principles of Compressive Sensing [7] 

 

 

II. LITERATURE REVIEW 

Nimisha Ghosh et al. [1] (2023) provided knowledge of Compressive Sensing (CS) for conservation of energy in 

disconnected IoT environments where only compressed data is transmitted by mobile collectors. While this approach 

suffers reduction in transmission volume and latency, NP-hard joint tree construction and recovery complexity, and loss of 

accuracy at high noise/loss rates become significant impediments. Some heuristic approaches may hold promise, but their 

use in large-scale real-time environments has yet to be undertaken.  

 

Ahmed Mohammed Hussein et al. [2] (2023) Propose Distributed Prediction-Compression-Based Mechanism (DiPCoM)  

in order to allow ARIMA predictions and multiple compression methods to avoid unnecessary transmissions in IoT 

networking. It showed energy efficiency compared to previous approaches but would suffer from errors in prediction in 

dynamic environments, computationally expensive compression, and lower reconstruction accuracy in the mixture of 

streams.  

 

Deepa Devasenapathy et al. [3] (2023) presented enhanced grid-based synchronized routing with Bayesian CS for 

correlated sensor data aggregation, resulting in an accuracy improvement of up to 16.93% and a lifetime enhancement of 

about 22.9%. The limitations include sensitivity to grid-size errors, computational overhead of the Bayesian computations, 

and poor performance with irregular sensing patterns. 

 

B. Lal, et al. [4] (2023) propose a Light-weight CS based ECG monitoring had been developed for energy efficiency and 

security without actually burdening the sensor node with computational complexity. The system offers high compression 

and low energy usage at the edge; however, reconstruction suffers from degradation, particularly under high noise and 

synchronization overhead, with ambiguity in cross-device generalization performance. 

 

Gen-Sen Dong et al. [5] (2023) Used DCGAN together with 1D symmetric U-Net for vibration data reconstruction from 

an accuracy and speed point of view that proved to be better than the rival approaches. Challenges include the requirement 

of a very large dataset, GAN instability, poor robustness under low sampling rates, and limited generalization to unseen 

patterns.  
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Y. Zhang et al. [6] (2023) propose a method based on  DCT-based lossy compression and CKKS homomorphic encryption, 

a secure and communication-efficient FL system was introduced. High accuracy was maintained at extreme compression, 

but encryption cost a lot computability-wise, in theory secured. 

 

X. Tang et al., [7] 2023 applied CS on thermal and acoustic images to reduce CNN training time and to raise diagnostic 

accuracies to 99.39%. Potential weaknesses include a drop of performance with noisy and low-quality data, disputed CS 

sampling rates, and higher complexity introduced by a dual-sensor setup. 

. 

 

C. Sureshkumar et al. [8] (2023) proposed Adaptive Adjacent-based Compressive Sensing (AACS) using sparse matrices 

and fuzzy logic for energy-efficient WSN data reconstruction, thus yielding massive improvements in throughput and error. 

Limitations include the need for accurate location-AACS computation with degraded performance under high mobility and 

fuzzy logic computational cost. 

 

Xiaoling Huang et al. [9] (2023) designed an image encryption scheme based on CS and IWT with chaotic-RSA integration. 

The drawbacks are heavy computational load of RSA, accuracy-sensitive generation of chaotic parameters, and limited 

scalability to large and real-time IoT images. 

 

Alina L. Machidon et al. [10] (2023) review of CS–DL integration for sampling rate reduction, adaptive sensing, and robust 

reconstruction in heterogeneous devices. Identified gaps in standard benchmarks, hardware adaptation, and resistance to 

distribution shifts under latency/energy constraints. 

 

N. Iqbal et al. [11] (2023) design an energy and traffic reduction-bandwidth lightweight CS algorithm for seismic data 

through sensing compressed and reconstructing via DCNN without having any prior assumptions. The SNR of 30 dB was 

obtained with a compression gain of 16; in terms of performance, it surpassed all the existing methods. Some of the 

limitations include huge training data requirements, noise sensitivity, and inferencing expense in low-resource settings.  

 

Nayak et al. [12] (2023) an adaptive fuzzy rule-based CS system based on saliency, and edge features was proposed for 

automatic selection of sampling rate. The method yielded very good performance in terms of PSNR and SSIM redounded 

to the Standard, CCTV, Kodak and Set5 dataset, outperforming all competing state-of-the-art CS methods. Computational 

complexity and the risk of performance drop in the case of highly textured/noisy images stand as roadblocks of this 

approach. 

 

Zhang et al. [13] (2023) a new Chained Secure and Low-Energy Consumption Data Transmission (CS-LeCT) scheme was 

designed that has reconstruction performance much superior compared to the traditional CCS method. Both simulation 

experiment results and theoretical analysis proved the superior performance of CS-LeCT. Security assessments further 

demonstrate that CS-LeCT can stand up to several potential threats, including ciphertext-only attacks (COAs), known-

plaintext attacks (KPAs), and man-in-the-middle attacks (MiTMs). 

. 

 

Enas Wahab Abood et al. [14] (2023) Presented a CS-based audio compression and encryption system with Gaussian 

random sensing and Moore–Penrose pseudoinverse reconstruction. It reduces size by around 28%, while maintaining a 

high correlation and good PSNR/SSIM values. However, it suffers from concerns about computational load and scalability 

to real-time IoT scenarios. 

 

Vinay Pathak et al. [15] (2023) Designed a hybrid WSN–WBAN architecture using CS for biomedical data, providing up 

to 88.11% compression and reducing consensus time by 24%. It further improves PRD by 34.21%, all while consuming 

low CPU usage. The limitations consist of noise vulnerability, dependency on network connectivity, and scalability 

troubles. 

 

R. Gambheer and M. S. Bhat et al. [16] (2023) Applied CS to CCD/CMOS camera sensors for reduced measurements with 

high SNR on FPGA hardware for IoT imaging. CCD yields 13% power and 15% memory savings under no-light conditions 

at 25.76 dB PSNR. CMOS systems show worse performance in very low light, and embedding hardware complicates the 

system. 

 

S. Chen et al. [17] (2023) developed a CS-privacy-preserving FL scheme with gradient perturbation that safeguards data 

and labels from each other while curbing communication costs. Strong privacy and competitive accuracy were delivered 

with low computation. Effectiveness depends on appropriate perturbation parameters. 

 

Leming Wu et al. [18] (2023) elevated CS-based federated learning by refining the measurement matrix through genetic 

algorithms and through interleaving training and reconstruction, resulting in higher accuracy with large compression ratios. 

Some drawbacks, however, are the computational overhead of GA and the dependency on tuning of parameters. 
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W. Ma et al. [19] (2023) STRCS was proposed for channel reconstruction with FRI in the angular domain, where 

AoDs/AoAs are estimated from a finite number of channel measurements. They outperformed the existing techniques in 

terms of accuracy and pilot overhead. They stand to lose their viability in highly dynamic or dense multipath environments. 

 

Z. Gao et al. [20] (2023) studied CS-based GFMA for massive access by portraying a roadmap from single-antenna to 

large-scale cooperative MIMO and sourced/unsourced access. They pointed out the shortcomings of present random access 

schemes and the major challenges that lie ahead. Complexity of implementation and standardization remain to be 

addressed. 

Table 1: Compressive Sensing Techniques for Efficient IoT Data Transmission 

Reference & 

Year 

Proposed 

Method/Model 

Key Features Results Advantages Limitations/Challenges 

Nimisha Ghosh 

et al. (2023) [1] 

Compressive 

sensing with 

mobile 

collectors in 

disconnected 

WSN networks 

Transmits 

compressed data 

from sensor 

subsets; mobile 

data gathering 

Heuristic 

solutions 

show 

promising 

simulation 

results 

Reduces 

transmission 

volume & 

latency 

NP-hard tree 

construction/link 

scheduling, complex 

recovery, accuracy drops 

with noise/loss, 

scalability issues 

Ahmed 

Mohammed 

Hussein et al. 

(2023) [2] 

Distributed 

Prediction–

Compression-

Based 

Mechanism 

(DiPCoM) for 

IoT power 

saving 

Uses ARIMA 

for prediction; 

adaptive 

compression 

techniques 

(APCA, 

differential 

encoding, SAX, 

LZW) 

Simulations 

on real data 

show better 

energy 

efficiency 

than existing 

approaches 

Improved 

energy 

efficiency in IoT 

networks 

Prediction errors in 

dynamic environments, 

high compression 

overhead, less accuracy 

for heterogeneous 

streams 

Deepa 

Devasenapathy 

et al. (2023) [3] 

Grid-Based 

Synchronized 

Routing with 

Bayesian 

Compressive 

Sensing (GSR-

BCS) 

Exploits 

parameter 

correlations; 

optimizes grid 

size for data 

aggregation 

16.93% 

improvement 

in data 

accuracy; 

22.9% 

extension in 

network 

lifetime 

16.93% better 

data accuracy; 

22.9% longer 

network lifetime 

Sensitive to grid size; 

computational overhead; 

less effective in 

dynamic/irregular 

environments 

B. Lal, M. H. 

Conde et al. 

(2023) [4] 

CS-based ECG 

monitoring with 

intrinsic 

encryption 

Lightweight CS 

reduces 

sampling and 

encrypts 

measurements 

simultaneously 

Strong 

compression 

and security; 

power 

consumption 

cut at edge 

Energy 

efficient; strong 

compression 

and security 

Reconstruction 

degradation under 

noise/arrhythmia; key 

management overhead; 

latency on low-power 

MCUs 

Guan-Sen 

Dong et al. 

(2023) [5] 

Deep 

Convolutional 

GAN (DCGAN) 

for vibration 

data 

reconstruction 

Modified 1D 

symmetric U-

Net generator; 

1D classifier 

discriminator 

Superior 

accuracy and 

speed vs. 

existing 

methods 

High accuracy 

& speed; 

outperforms 

existing 

methods 

Requires large paired 

datasets; GAN training 

instability; less robust 

under low data/high 

noise; generalization 

issues 

Xiaoli Tang et 

al. (2023) [7] 

CS-based Dual-

Channel CNN 

for gearbox fault 

diagnosis 

Combines 

thermal and 

acoustic MSB 

images; exploits 

sparsity for 

faster CNN 

training 

99.39% 

diagnostic 

accuracy; 

outperforms 

single-

channel 

methods 

99.39% 

diagnostic 

accuracy; 

outperforms 

single-channel 

methods 

Performance drops with 

noisy/low-quality data; 

sensitive to sampling rate; 

complexity in dual-sensor 

acquisition 

C. 

Sureshkumar et 

al. (2023) [8] 

Adaptive 

Adjacent-based 

Compressive 

Sensing (AACS) 

for WSNs 

Uses sensor 

coordinates for 

sparse matrix; 

fuzzy logic-

54.7% higher 

network 

throughput; 

76.9% lower 

routing 

54.7% higher 

throughput; 

76.9% lower 

routing 

Needs accurate location 

info; degrades in dynamic 

topologies; fuzzy logic 

overhead on resource-

limited nodes 
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based forwarder 

selection 

overhead; 

44% less 

relative error 

overhead; 44% 

less error 

Xiaoling 

Huang et al. 

(2023) [9] 

CS with Integer 

Wavelet 

Transform 

(IWT) + chaotic 

systems + RSA 

for image 

encryption 

Chaotic initial 

values 

encrypted by 

RSA; chaotic & 

Hadamard 

matrices for 

measurement; 

info entropy-

based 

initialization 

High 

normalized 

correlation; 

robust against 

plaintext 

attacks 

Robust against 

known/chosen-

plaintext 

attacks; 

imperceptibility 

RSA overhead; 

dependency on chaotic 

parameter accuracy; 

scalability issues for 

large/real-time images 

Alina L. 

Machidon et al. 

(2023) [10] 

Survey on CS 

and deep 

learning 

integration 

Explores design 

patterns for CS-

DL pipelines; 

addresses 

heterogeneous 

devices 

Provides 

guidance; 

identifies 

gaps for 

practical 

deployment 

Practical 

deployment 

guidance; 

highlights 

research trends 

Lack of benchmarks; 

hardware heterogeneity; 

robustness under 

distribution shifts; 

latency/energy tradeoffs 

on edge 

 

 

III. RESEARCH OBJECTIVES 

 

 To analyze the existing compressed sensing and reconstruction methodologies for wireless IoT network. 

 To design a framework to improve the data transmission accuracy and reconstruction accuracy. 

 To address the optimization problem in reconstruction models, there's a focus on exploiting data structures like 

sparsity in certain transformation domains, and low rank characteristics. 

 

IV. PROPOSED METHODOLOGGY  

 

The proposed system aims to boost the efficiency and reliability of transmission of IoT data via a neural network-based 

approach combined with compressive sensing and advanced reconstruction algorithms. A random sensing matrix is 

generated, which then acts as the basis of compression. This matrix is distributed among several IoT nodes, where upon 

every node, a different sampling procedure takes place to yield compressed representations of the original data. All of these 

diverse compressed samples are collected at a central processing unit or a cloud server. 

After aggregation, the data collected from the remote sensing system can be fed into a custom-built, neural network 

reconstruction algorithm designed to recover the original matrix from its compressed forms. That deep learning model is 

further forced into learning very complicated nonlinear mappings between compressed measurements used as the input 

and the original signal that serves as the experiment. These mappings yielded excellent reconstruction. To perfect these 

results, sparse and low-rank matrix decomposition techniques are used in the system to take advantage of IoT data's sparsity 

and structural patterns in order to remove redundancy and noise. 

Being tested for performance thoroughly, the system undergoes measurements with metrics such as Reconstruction Error, 

Percent Root Difference (PRD), MSE (Mean Squared Error), and RMSE (Root Mean Square Error). These metrics provide 

a quantitative assessment of the system in terms of information loss minimization and in maintaining similarity between 

the reconstructed data and original data. This system combines compressive sensing with deep learning and matrix 

decomposition techniques to ensure the least bit rate, less energy depletion from the IoT nodes, and the strongest data 

recovery, thereby being suitable for any resource-constrained IoT environment. 
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Fig.2 Proposed Block Diagram 

 

Fig. 2 shows block diagram of proposed model. The results portrayed the performance evaluation of Hybrid GA-CO 

method over different WSN scenarios. Each of these scenarios offers important routing metrics such as the number of hops 

(intermediate transmission steps), total packets sent, dead nodes (inactive or failed nodes), or even specific routing nodes 

used. For instance, in Scene #2, the approach had seven hops, 3969 packets transmitted, 17 dead nodes, routing nodes 

formed by nodes 1, 35, 19, 11, 17, 31, 2, and so on. The best solution for the case was obtained with GA-CS, recorded as 

-6.8172e-19. In the other scenes, these values fluctuate, depending on the network's adaptability and the method's ability 

to respond to changing topology and operating conditions. These optimal values by GA-CS range between 1.6666e-16 and 

4.1016e-17, revealing the algorithm's consistency in finding near-to-optimal routing solutions in different conditions. This 

balances to underscore the efficiency of GA-CO to minimize path length concerning packet delivery, node lifetime, and 

overall network performance in different conditions. 

Table 2 Initial Parameters 

Parameter Description Value 

m Number of rows (read from edit1) str2num(get(handles.edit1, 'String')) 

n Number of columns (read from edit2) str2num(get(handles.edit2, 'String')) 

SearchAgents_no Number of search agents 30 

Max_iteration Maximum number of iterations 500 

lb Lower bound for the variables -10 

ub Upper bound for the variables 10 

dim Dimension of the search space 30 

 

A. Working Mechanism: 

Creation of Input Matrix: 

 Generate a random matrix A of dimensions times m×n. 

 This matrix serves as the initial input data that needs to be sensed, compressed, and reconstructed. 

Sampling Function in IoT Nodes: 

The random sensing matrix A finds itself deployed over many IoT nodes, each node performing its own sampling operation 

with each producing a distinct sampled subset. Sampling functions are chosen in such a way as to generate compressed 

views of the same original matrix from different perspectives, thus ensuring that complementary information is contributed 

by each node. This distributed sampling mechanism results in increased data diversity and robustness, from which the 

network is able to reconstruct the original matrix with very high accuracy and in an energy-saving manner in the IoT 

environment.  

Data Collection and Reconstruction: 

The reconstruction algorithm collects the compressed streams of data from all IoT nodes to assure that all distributed 

information gets centralized efficiently for processing. From a number of obtained compressed samples, the algorithm, 

through deep learning techniques in various forms, attempts to reconstruct the original matrix AAA, in fact learning the 

particular underlying structure and the correlation in the data with the goal of reconstructing a faithful approximation of 

the original set with minimal information loss through compression techniques. Combining the power of compressive 

sensing for data acquisition efficiently and the learning abilities of neural networks, the reconstruction framework is able 

to precisely recover the original signal, that is, it serves real-time IoT applications where bandwidth and energy efficiency 

are extremely important. 

Comparison of Input and Reconstructed Matrix: 

 Evaluate the accuracy of the reconstructed matrix by comparing it to the original input matrix. 

 Utilize various performance metrics to quantify the reconstruction quality. 
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B.  Algorithm: 

Sparse and Low-Rank Matrix Decomposition: 

Combine various techniques to obtain sparse and low-rank matrix decomposition for better reconstruction. These methods 

identify the most critical components of the data and preserve them, thus increasing reconstruction fidelity. 

 

C. Performance Metrics: 

Reconstruction Error: 

 

The difference between the original and reconstructed matrices is measured to evaluate the overall accuracy of the 

reconstruction, providing a direct indication of how closely the reconstructed data matches the original. 

 
Percent Root-Mean-Square Difference (PRD): 

 

To assess the accuracy of the reconstructed data, the Percentage Root Difference (PRD) is calculated to quantify the relative 

error between the original and reconstructed datasets, providing insight into the proportional accuracy of reconstruction. 

Additionally, the Mean Squared Error (MSE) is computed to measure the average squared difference between 

corresponding elements of the original and reconstructed matrices, indicating the overall error magnitude. From the MSE, 

the Root Mean Squared Error (RMSE) is derived by taking its square root, yielding a more interpretable error measure 

expressed in the same units as the original data. 

 

V. RESULT DISCUSSION 

 
The Hybrid GA-CO approach optimizes energy-efficient routing in WSNs by combining GA’s global search with CO’s 

local tuning for faster convergence and higher solution quality. Simulation results across various topologies show its 

efficiency, robustness, and scalability, achieving near-optimal objective function values and adaptable routing 

performance. 

 
Fig.3 Simulation Diagram 

 

 
 

Fig.4.WSN IoT Network 
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Fig. 4. shows a wireless sensor network (WSN) of 50 IoT nodes distributed over a 250-unit range, with connections 

representing communication links between nodes. Two nodes, highlighted with green circles, likely indicate key or gateway 

nodes in the network. 

 

 
Fig. 5 WSN Iot Network Searching Short Path Searching Path Searching For Hop 8 

Fig. 5 shows a Wireless Sensor Network (WSN) showing nodes and their connections, highlighting the shortest path with 

2 hops and 7 steps. Key router nodes and dead nodes are marked, indicating network efficiency and reliability. 

 

 
 

Fig. 6   WSN Iot Network Searching Short Path  Searching For Hop 8 

This Wireless Sensor Network (WSN) in fig.6 shows nodes connected with edges, highlighting the shortest path of 4 hops 

between router nodes 1 and 2, with 19 dead nodes and 5034 packets sent. Green nodes indicate active routers, red nodes 

are dead, and the path endpoints are circled in green. 

 

 
 

Fig. 7   WSN Iot Network Searching Short Path Searching For Hop 7 

The fig. 7 represents a Wireless Sensor Network (WSN) with nodes and their connections, highlighting a shortest path of 

3 with 7 hops. It also shows key metrics like packets sent (4858), dead nodes (31), and router nodes (1, 35, 19, 26, 10, 31, 

2). 
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Fig. 8   WSN Iot Network Searching Short Path Searching For Hop 7 

The WSN fig. 8 shows a network with 7 hops in the shortest path between nodes 1 and 2, transmitting 4557 packets, with 

13 dead nodes and 8 router nodes highlighted. The network connectivity and node positions are visualized with router 

nodes emphasized by green circles. 

4.5 ANN Performance  

 
Fig. 9   Error Histogram Analysis  

The error histogram in fig. 9 shows that most prediction errors are near zero, indicating high model accuracy. Training, 

validation, and test errors are tightly clustered, suggesting good generalization. 

The Artificial Neural Network (ANN) at the 1000th-epoch stage yielded a gradient of 6.9804, which shows the rate of 

change in the error of the model with respect to the weights. The learning-rate parameter, μ, signifies an update step size 

of 1× 10−9, which is extremely minuscule and largely contributes to stable convergence, but at the cost of slower speed. 

The validation check count is kept at zero, indicating that the model did not resort to any fall within the validation-fledged 

set in the process of training. What these things really suggest is that the ANN training is stable, with slow improvements 

in learning and no hint of overfitting up to the 1000th epoch. 

 
Fig. 10   Gradient, Mu, Validation Check 

The plots in fig.10 show convergence with a very small final gradient (6.98×10⁻⁶) and stable μ at 1×10⁻⁹. No validation 

failures occurred, indicating consistent performance across epochs. 
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Fig.11   MSE Error 

Fig. 11 shows that the model achieved its best validation MSE of 6.95×10⁻⁷ at epoch 1000, with all datasets showing a 

steady error decline. Training, validation, and test curves remain close, indicating minimal overfitting. 

 

 

 
Fig.12   Validation Test  

 

All regression plots in fig .12 show R value of 1 for training, validation, test, and combined data, indicating perfect 

correlation between predicted outputs and actual targets. 

 

Performance Metrics 

 Reconstruction Error (Frobenius norm): The Frobenius norm of the reconstruction error measures the difference between 

the original matrix A and the reconstructed matrix   A ̂. It is given by the square root of the sum of squared differences of 

every corresponding element in the two matrices. 

        (1) 

 Mean Squared Error (MSE): MSE is the average of the squared differences between predicted values (x^i\hat{x}_ix^i) 

and actual values (xix_ixi). It gives a measure of the average squared deviation of predictions from the actual values. 

                                    (2) 

Root Mean Squared Error (RMSE): RMSE is an acronym for Root Mean Square Error. It is extensively used to measure 

the errors associated with predicted values, by a model or an estimator, in comparison to the observed values. 

                        (3) 

Percent Root Mean Square Difference (PRD)-The Percent Root Mean Square Difference quantifies the error between the 

original and predicted values as a percentage of the norm of the original values. It measures the relative size of the prediction 

error in relation to the magnitude of the actual values, thus providing a normalized error measure. 

                               (4) 

The given performance metrics for the Artificial Neural Network (ANN): 
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Table 3 performance metrics for the proposed system 

Metric Value 

Reconstruction Error (Frobenius norm) 0.8415 

Mean Squared Error (MSE) 0.0000 

Root Mean Squared Error (RMSE) 0.0042 

Percent Root Mean Square Difference (PRD) 0.31 

 

The means for evaluating the results of the proposed system show its high accuracy in reconstructing data. The 

Reconstruction Error, expressed as the Frobenius norm, is 0.8415, reflecting the composite difference between the original 

data and the reconstructed data. The Mean Squared Error (MSE)-0.0000-is negligible, implying that it predicted perfectly 

on average. RMSE being another indicator of the model's performance is 0.0042-the model's predictions rarely deviate 

from the actual values. In continuation, the Percent Root Mean Square Difference (PRD) of 0.31% accentuates the model's 

proficiency in retaining the error percentage relative to the true values at a very low level. These metrics collectively show 

how well the system performs in accurately reconstructing compressed data. 

 

VI. CONCLUSION 

 

The proposed framework offers paradigm changes in optimizing IoT sensor data transmission through compressive sensing 

enabled by neural networks for reconstruction with maximum fidelity. The compressed measurements are gathered over 

distributed IoT nodes via random matrix generation and multi-layer adaptive sampling and reconstruct the compressed data 

into its original form-the high-dimensional data matrix-with high precision. The sparse and low-rank matrix decomposition 

methods-that are convex optimization and matrix factorization on the opposite side-minimize the reconstruction error for 

the least time without adversely affecting the signal features. An adaptive, energy-efficient end-to-end transmission and 

routing system with Hybrid GA–CO has been deployed that outperforms the existing approaches in a dynamic environment 

with changing WSN conditions. Experimental results on multiple evaluation criteria and varied topologies prove that hop 

count, packet delivery ratio, node life, and route stability have all improved, and GA–CO achieves near-global optimum 

on average in terms of all criteria in comparison with GA–CS. Particularly, the system overcomes generalization capacity 

with no degradation in the validation stage, with Frobenius norm=0.8415, MSE=0.0000, RMSE=0.0042, PRD=0.3124%. 

Security can be enhanced further with encryption and compliance mechanism, while reinforcement learning can cater to 

adaptive optimization in a dynamic environment. Subsequently, multi-objective optimization that can strike a balance 

between accuracy, energy, and network load and amalgamation with terrestrial–satellite IoT models would help promote 

abilities. Real-world deployment interventions in environmental monitoring, smart agriculture, and transportation 

industries will serve as a testbed for validating and customizing the framework for divergent industrial needs. 
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